A.D.M. COLLEGE FOR WOMEN (AUTONOMOUS)

(Accredited With 'A' Grade By NAAC 3rd Cycle)

(Affiliated to Bharathidasan University, Tiruchirappalli)

NAGAPATTINAM – 611 001

PG AND RESEARCH DEPARTMENT OF PHYSICS

SYLLABUS

M.Sc. PHYSICS

(2021-2024 Batch)

PG DEPARTMENT OF PHYSICS M.Sc.PHYSICS COURSE STRUCTURE UNDER CBCS (2021-2023 Batch)

OBE ELEMENTS

Programme Educational Objectives (PEO):

PEO 1:	ToimpartknowledgeinadvancedconceptsandapplicationsindifferentfieldsofPhysics.
PEO 2:	Topreparestudentsenterintoprofessionalcourses.
PEO 3:	Toeducatestudentstooccupyimportantpositionsinbusinesshouses,industriesandorgani zations.
PEO 4:	Toequipstudentswithskillstoexcelintheirfuturecareers.
PEO 5:	Toenablestudentstotakeupchallengingjobs.

Programme Outcomes (PO):

On completion of the course the learner will be able

PO 1:	Studentsmustbeabletotakeimportantmanagerialdecisions. Demonstra
	tere levant generic skills and global competencies at National and Global levant generic skills and global competencies at National and Global levant generic skills and global competencies at National and Global levant generic skills and global competencies at National and Global levant generic skills and global competencies at National and Global levant generic skills and global competencies at National and Global levant generic skills and global competencies at National and Global levant generic skills and global competencies at National and Global levant generic skills and global generic skills and glo
	evel.
PO 2:	Studentswouldhaveacquiredthoroughknowledgeinthefieldofproblem-
	solvingskillsthatarerequiredto solvedifferenttypesofPhysics-relatedproblems
PO 3:	withwell-definedsolutions, and tackle open-
	endedproblemsthatbelongtothedisciplinaryarea.
PO 4:	Investigativeskills,includingskillsofindependentinvestigationofPhysics-
	relatedissuesandproblemsinResearchareas.
PO 5:	Communication skills involving the ability to listencar efully, to read texts and research.

Programme Specific Outcomes (PSO): On completion of the course the learner will be able

PSO 1:	Research—Acquirerecentknowledgetowardsresearch
PSO 2:	EntrepreneurshipandEmployability
PSO 3:	Exploringproblemsolving
PSO 4:	Adoptnewtechnology
PSO 5:	Projectsandmodeldesign

M.Sc. PHYSICS 2021- 2023 Batch

STRUCTURE OF THE PROGRAMME

Course	No. of Papers	Hours	Credit
Core Course	14	89	61
Elective Course	5	25	25
Project	1	6	4
Total	20	120	90

M.Sc. PHYSICS 2021- 2023 Batch

SCHEME OF THE PROGRAMME

			Ins.		Exam	Marks		Total
Sem.	Course Code	Course	Hrs	Credit	Hours	CIA	SE	Marks
	PGPA	Core Course – I(CC) - Mathematical Physics	6	4	3	25	75	100
	PGPB	Core Course – II(CC) - Classical Dynamics and Relativity	6	4	3	25	75	100
_	PGPC	Core Course –III(CC)- Electronics	5	4	3	25	75	100
Ι	PGPD	Core Course – IV (CC) - Methods of Spectroscopy	5	4	3	25	75	100
	PGPE	Core Practical – I (CP)Physics Practical – I (General andElectronics)	8	4	3	40	60	100
		TOTAL	30	20	-	-	-	500
	PGPF	Core Course – V(CC)-Electromagnetic Theory	6	5	3	25	75	100
II	PGPG	Core Course – VI(CC)- Quantum Mechanics	6	5	3	25	75	100
11	PGPHY	Core Practical – II(CP)Physics Practical – III (General and Electronics)	8	4	3	40	60	100
	PGPE1	Elective Course – I(EC) - Microprocessor and Microcontroller/ Data Communication and Computer Networks	5	5	3	25	75	100
	PGPE2 Elective Course – II (EC)Numerical Methods and C++ Programming/Computer Organizations		5	5	3	25	75	100
		TOTAL	30	24	-	-	-	500
	PGPI	Core Course – VII(CC)- Statistical Mechanics	6	5	3	25	75	100
III	PGPJ	Core Course–VIII (CC) - Solid State Physics	6	5	3	25	75	100
	PGPKY	Core Practical – III (CP)Physics Practical – III (Microprocessor andProgramming)	8	4	3	40	60	100
	PGPE3 Elective Course –III (EC)NanoMaterials and Applications/ Crystal Physics		5	5	3	25	75	100
	PGPE4	Elective Course – IV (EC)Communication Physics/ Laser and Fiber Optics	5	5	3	25	75	100
		TOTAL	30	24	-	-	-	500

	PGPL	Core Course –IX(CC)						
		Nuclear and ParticlePhysics	6	5	3	25	75	100
	PGPM	Core Course – X(CC) -Advanced						
IV		Physics	6	4	3	25	75	100
	PGPNY	Core Practical – IV (CP)Physics	7	4	3	40	60	100
		Practical – IV (Electronics)						
	PGPE5	Elective Course – V (EC) - Advanced						
		Experimental Techniques/ Basic	5	5	3	25	75	100
		Computational Nano Electronics						
	PGPP	Project	6	4	-	-	-	100
		Extra Credit Course - SWAYAM /	-	2	-	-	-	-
		MOOC						
			••					
		TOTAL	30	24	-	-	-	500
		CD AND TOTAL	120	0.2				2000
		GRANDTOTAL	120	92				2000

MSc – EXTRA CREDIT COURSE

Year	SEM	Title of the Paper	Credit
I	II	Swayam / MOOC	2
III	IV	Internship Training	2

Core	CORE COURSE I / MATHEMATICAL PHYSICS - PGPA									
Course &										
Title										
Class	MSc Physics	Semester	1							
Course										
Objectives	 To learn various mathematical concepts and techniques in vector space, groups and functions of special types to solve physical problems. Revise the knowledge of calculus, vectors, vector calculus, probability and probability distributions. Learn the basic properties of gamma, beta function and differential equation 									
	 Describe the basic ideas about cauchy's integral theorem and integral formulation Quantitative understanding of group theory, classes, cosets sub groups. 									
Cognitive	K1 -Recalling									
Level	K2 -Understanding									
	K3 -Applying									
	K4 - Analyzing									
	K5 - Evaluating									
	K6 - Creating									
Unit I	VECTOR ANALYSIS		18 Hours							
	Concept of vector and scalar fie	elds – Gradient, divergence	e, curl and							
	Laplacian – Vector identities – Lin	ne integral, surface integral a	and volume							
	integral - Gauss theorem, Green	's theorem, Stoke's theorem	n and their							
	applications – Definitions in linear	independence of vectors.								
	(Content- 15 Hrs, Assessment -3	Hrs) (18 Hrs)								
Unit II	MATRIX THEORY AND TENS	SORS	18 Hours							
	Matrix Theory: Characteristic eq	uation of a matrix - Eigen	values and							
	eigenvectors –Cayley–Hamilton	theorem -Reduction of a	matrix to							
	diagonal form – Jacobi method.									
	Tensors: Contra variant, covariant	and mixed tensors - Rank o	f a tensor –							

	Symmetric and anti symmetric tensors – Contraction of tensor – Quotient					
	law					
	(Content- 15 Hrs, Assessment -3 Hrs) (18 Hrs)					
Unit III	GROUP THEORY	18 Hours				
	Basic definitions – Multiplication table – Subgroups, cosets and classes –					
	Point and space groups – Homomorphism and isomorphism – Reducible					
	and irreducible representations – Schur's lemma The great orthogonality					
	theorem (qualitative treatment without proof) – Formation of character					
	table of C2v and C3v.					
	(Content- 15 Hrs, Assessment -3 Hrs) (18 Hrs)					
Unit IV	COMPLEX ANALYSIS	18 Hours				
	Cauchy-Riemann conditions - Complex integration - Cauchy's integral					
	theorem and integral formula - Taylor's and Laurent's series - Residues					
	and singularities - Cauchy's residue theorem-Computation of residues-					
	Evaluation of definite integrals using residues.					
	(Content- 15 Hrs, Assessment -3 Hrs) (18 Hrs)					
Unit V	SPECIAL FUNCTIONS	18 Hours				
	Basic properties of gamma and beta functions Legendre, Bessel,					
	Laugerre and Hermite differential equation: Series solution, generating					
	function, recurrence relations and orthogonality relations. (Content- 15					
	Hrs, Assessment -3 Hrs) (18 Hrs)					
Unit VI	Green's function, partial differential equations, elements of	Group				
	computational techniques	Discussion				
	Simpson's rule, solution of the first-order differential equation					
	using the Runge-Kutta method.					
	Finite difference methods, tensors, introductory group theories.					
	 Taylor's and Laurent's series – Poles. 					
	 Tensors: Introductory group theory SU(2), O(3). 					

Text	1. B.D. G	B.D. Gupta, Mathematical Physics (Vikas Pub., Noida, 2015) 4th edition.									
Books:	1.										
Reference	1. A.W.	A.W. Joshi, Matrices and Tensors in Physics (New Age, New Delhi, 2006).									
Books:	2. H.K. I	H.K. Dass and Rama Verma, Mathematical Physics (S. Chand, New Delhi ,2008).									
	3. Sathya	prakash, Mathematical Physics.e Resources:									
Course	CO 1:	To learn various mathematical concepts and techniques in vector space,									
Outcome:		groups and functions of special types to solve physical problems.									
	CO 2:	Revise the knowledge of calculus, vectors, vector calculus, probability and probability distributions.									
	CO 3:	Learn the basic properties of gamma, beta function and differential equation									
	CO 4:	Describe the basic ideas about cauchy's integral theorem and integral formulation									
	CO 5:	Quantitative understanding of group theory, classes, cosets sub groups.									

	mapping of cos mail of a room									
CO/PO	PO					O/PO PO PSO				
	1	2	3	4	5	1	2	3	4	5
CO1	S	S	S	S	S	S	S	S	S	S
CO2	S	S	S	S	S	S	S	S	S	S
CO3	S	M	S	S	S	S	S	S	S	S
CO4	S	S	S	S	S	S	S	S	S	S
CO5	S	S	S	S	S	S	S	S	S	S

Core Course	Core Course-II / CLA	SSICAL DYNAMICS AND F	RELATIVITY - PGI	PB
& Title				
Class	I MSc Physics	Semester	I	
Course Objectives	 simplified treatments of many To know what central constheorems of angular momentu Using vector and matrix me equation. To establish the Kepler's law motion. 	servative forces mathematical	ly, understand the conciples of rigid bodings are law of gravitation	onservative es –Euler's
	K4 - Analyzing			
	K5 - Evaluating			
	K6 - Creating			
Unit I	FUNDAMENTAL PRINCIPL	ES AND LAGRANGIAN FO	RMULATION	18 Hours
	Mechanics of a particle and a system of the desired coordinates — D' Hamilton's principle — Lagrang and symmetry properties — Approximation of the desired properties — Approximation of the desired properties — (Content- 15 Hrs, Assessment — Content- 15 Hrs, Assessment — Conte	Alembert's principle and Lage's equations of motion – Condications to linear harmonic oparticles in an electromagnetic	grange's equation — nservation theorems scillator, pendulum,	
Unit II	MOTION UNDER CENTRAL			18 Hours
	Conservation of energy and ang problem – Vitriol theorem – Sca – Geo stationary satellites – Ecc (Content- 15 Hrs, Assessment –	entricity of orbit of satellites – l	- Artificial satellites	

Unit III	RIGID BODY DYNAMICS AND OSCILLATORY MOTION Euler's angles –	18 Hours					
	Moments and products of inertia – Euler's equations – Symmetrical top – Theory	10 Hours					
	of small oscillations – Normal modes and frequencies – Linear triatomic molecule						
	– Wave equation and motion – Phase velocity – Group velocity – Dispersion.						
	(Content- 15 Hrs, Assessment -3 Hrs) (18 Hrs)						
Unit IV	HAMILTON'S FORMULATION	18 Hours					
	Hamilton's canonical equations of motion – Hamilton's equations from variational						
	principle – Principle of least action – Canonical transformations – Poission bracket						
	- HamiltonJacobi method - Action and angle variables - Kepler's problem in						
	action angle variables – Applications of Hamilton's equations of motion to linear						
	harmonic oscillator, pendulum, compound pendulum and charged particles in an						
	electromagnetic field.						
	(Content- 15 Hrs, Assessment -3 Hrs) (18 Hrs)						
Unit V	RELATIVISTIC MECHANICS	18 Hours					
	Reviews of basic ideas of special relativity - Energy momentum four -vector -						
	Minkowski's four-dimensional space – Newtonian relativity- Galileon						
	transformation equations-						
	Lorentz transformation as rotation in Minkowski's space – Composition of Lorentz						
	transformation about two orthogonal directions – Thomas precession – Elements of						
	general theory of relativity. (Content- 15 Hrs, Assessment -3 Hrs) (18 Hrs)						
Unit VI	Dynamical systems, phase space dynamics, stability analysis	Group					
	Poisson brackets, and canonical transformations, symmetry, invariance and	Discussion					
	Noether's theorem						
	 Radiation from moving charge and dipoles and retarded potentials. 						
T4 P - 1 -		otion s :: 1					
Text Books:	1. H. Goldstein, C.P. Poole and J.L. Safko, Classical Mechanics (Pearson Education 1).	ation and					
	Dorling Kindersley, New Delhi, 2007).						
	2. S.L. Gupta, V. Kumar and H.V. Sharma, Classical Mechanics (Pragati Prakas	shan,					
Reference	1. V.B. Bhatia, Classical Mechanics (Narosa, New Delhi, 1997).						

Books:	2. 7	2. T.L. Chow, Classical Mechanics (John-Wiley, New York, 199						
Web-	1.htt	ps://Physics. Stackexchange.com						
Resources:	2.htt	ps://www.world scientific.com						
	3.htt	ps://www.semantics.scholar.org						
Course	CO 1:	Have a deep understanding of Newton law.						
Outcome:	CO 2:	Apply to variation principle to real physical problems.						
	CO 3:	Able to frame model in mechanical systems, both in inertial and rotating frames and Hamilton equation.						
	CO 4:	Identify the forces and torques occurring in a given problem.						
	CO 5:	To setup the equation of motion and solve the problems.						

CO/PO			PO					PSO		
	1	2	3	4	5	1	2	3	4	5
CO1	S	S	S	S	S	S	S	S	S	S
CO2	S	M	S	S	S	S	S	S	S	S
CO3	S	S	S	S	S	S	S	S	S	S
CO4	S	M	S	S	S	S	S	S	S	S
CO5	S	S	S	S	S	S	S	S	S	S

Core Course	CORE COURSE III									
& Title	/ ELECTRONICS - PGPC									
Class	I MSc Physics	Semester	I							
Course	This course is familiar	ize the students about the	transistor, operational							
Objectives	amplifier and Digital elec	tronics Circuit.								
	Acquire the fundamenta	l knowledge and application	of the semiconductor							
	Device.									
	Knowledge of the basic principles of electronic circuits operation.									
	Fundamental of analog ar	nd digital integrated circuit.								
	Design methodologies us	ing practical integrated circuit	and to understand the							
	operation of various ba	asic circuit of MOSFET and	d analyze and design							
	MOSFET bias circuit.									
Cognitive Level	K1 -Recalling									
	K2 -Understanding									
	K3 -Applying									
	K4 - Analyzing									
	K5 - Evaluating									
	K6 - Creating									
Unit I	SEMICONDUCTOR DEVICE	SEMICONDUCTOR DEVICES 18 Hours								
	Varactor, Schottky, tunnel, Gur	nn, optoelectronic, LASER, L	ED and							
	photo diodes –Depletion as	nd enhancement type MC	OSFFT-							
	Characteristics of UJT,UJT Rela	xation Oscillator and SCR -S	CR as a							
	Switch- Power control DIAC and	d TRIAC.								
	(Content- 12 Hrs, Assessment -3 Hrs) (15 Hrs)									
Unit II	OPERATION AMPLIFIER		18 Hours							
	Wien bridge and phase-shift o	scillators- Triangular, saw-to	oth and							
	square-waves generators – Schn	nitt trigger- Voltage control o	scillator							
	Phase-locked loops Weighted	resistor and binary R-2R ladde	r digital							
	to analog converters Counte	r type and successive approx	ximation							

Unit III	analog to digital converters Solving simultaneous and differential equations. (Content- 12 Hrs, Assessment -3 Hrs) (15 Hrs) DIGITAL CIRCUITS-I Digital comparator - Parity generator/checker - Data selector BCD to decimal decoder -Seven segment decoder - Encoders - RS, JK, D and JK master-slave flip-flops. (Content- 12 Hrs, Assessment -3 Hrs) (15 Hrs)	18 Hours
Unit IV	DIGITAL CIRCUITS-II Serial-in serial-out, serial-in parallel-out and parallel-in serial-out shift registers — Synchronous, asynchronous, ring and up/down (using mod 10) counters - Multiplexers(1-8) — Demultiplexers (8-1). (Content- 12 Hrs, Assessment -3 Hrs) (15 Hrs)	18 Hours
Unit V	FABRICATION AND IC TIMER Basic monolithic ICs – Epitaxial growth – Masking – Etching impurity diffusion – Fabricating monolithic resistors, diodes, transistors, inductors and capacitors – Circuit layout – Contacts and inter connections – Charge coupled device – Applications of CCDs - 555 timer: Description of the functional diagram, applications of monostable and astable operations (Content- 12 Hrs, Assessment -3 Hrs) (15 Hrs))	18 Hours
Unit VI	 Filtering and noise reduction Shielding and grounding Fourier transforms, lock-in detector, box-car integrator, modulation techniques, high-frequency devices. Working of solar cell, LED Working of Register, Counters and comparators 	Practical
Text Books:	1. T.F. Schubert, E.M. Kim, Active and Nonlinear Electronics (Joh	n Wiley, New

	York, 1996). 2. L. Floyd, Electronic Devices (Pearson Education, New York, 2004).
Reference Books:	 R.L. Geiger, P.E. Allen and N.R Strader, VLSI Design Techniques for Analog and Digital Circuits (McGrawHill, Singapore, 1990). D. Roy Choudhury and S.B. Jain, Linear Integrated Circuit (New Age International Publications, New Delhi, 2010).
Web- Resources:	1.https://www.Explainthatstuff.com 2.https://www.Physics and Radio-electronics.com 3.https://www.makers.space.com
Course Outcome:	CO 1: Explain the theoretical principles essential for understanding the operation of electronic circuit.
	CO 2: Analyze electrical circuit and calculate the main parameters.
	CO 3: Develop Design and create simple analogue and digital electronics circuit.
	CO 4: Understand the fundamentals and area of application for the integrated circuit.
	CO 5: Know about the multistage amplifier using BJT and FET various configuration

Mapping	napping of Cos with 1 os & 1 bos.									
CO/PO			PO					PSO		
	1	2	3	4	5	1	2	3	4	5
CO1	S	S	S	S	S	S	S	S	S	S
CO2	S	S	S	S	S	S	S	S	S	M
CO3	S	S	M	S	S	S	S	S	S	S
CO4	S	S	S	S	S	S	S	S	S	S
CO5	S	S	S	S	S	M	S	M	S	S

Core	CORE COURSE IV / METHOD OF SPECTROSCOPY									
Course &	PGPD									
Title										
Class	I MSc Physics	Semester	I							
Course	applications in the determinations of atomic structure, chemical composition and Discription Discription									
Objectives	Physical properties of ma									
	To explain the absorption and emission spectra.									
	• To justify the difference in intensity between stokes and antistokes line.									
	• Explain NMR Spectroscopy knows how nuclear spins are affected by a magnetic									
	field.									
	To study Frank Condon p	orinciple.								
Cognitive	K1 -Recalling									
Level	K2 -Understanding									
	K3 -Applying									
	K4 - Analyzing									
	K5 - Evaluating									
	K6 - Creating									
Unit I	ATOMIC SPECTROSCOPY		18 Hours							
	Hyperfine structure – Zeeman	and Paschen—Back effect of	one and two							
	electron systems – Selection rules	s – Stark effect.								
	MICROWAVE AND INFRAR	ED ABSORPTION SPECTR	OSCOPIES							
	MICROWAVE SPECTROSC	OPY: Rotation of diatomic	molecules -							
	Rotational spectra of polyatomic	molecules – Spectrum of non	rigid rotator –							
	Experimental technique – Polyat	omic molecules - Linear, symi	metric top and							
	asymmetric top molecules. (Cont	tent- 12 Hrs, Assessment -3 H	rs) (15 Hrs)							
Unit II	INFRARED ABSORPTION	SPECTROSCOPY: Vibrat	ing diatomic 18 Hours							
	molecule -Anharmonic oscillato	or – Diatomic vibrating rotator	r – Vibration-							
	rotation spectrum of carbon mone	oxide – Influence of rotation or	n the spectrum							
	of polyatomic molecules – Linear	r and symmetric top molecules.								
	(Content- 12 Hrs, Assessment -	3 Hrs) (15 Hrs)								

Unit III	RAMAN SPECTROSCOPY	18 Hours						
	Quantum theory of Raman effect -Pure rotational Raman spectra - Linear							
	molecules - Symmetric top molecules - Vibration Raman spectra -							
	Rotational fine structure - Structural determination - Raman spectra -							
	Instrumentation – Raman effect and molecular structure – Raman activity of							
	molecular vibrations. (Content- 12 Hrs, Assessment -3 Hrs) (15 Hrs)							
Unit IV	NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY	18 Hours						
	Basic principles –Quantum theory of NMR- Bloch equations and solutions –							
	Shielding and deshielding effects – Chemical shift – Spin lattice and spin-spin							
	relaxation- Coupling constants - Experimental technique - Double coil							
	method – Structural diagnosis and hydrogen bonding.							
	(Content- 12 Hrs, Assessment -3 Hrs) (15 Hrs)							
Unit V	ELECTRONIC AND ESR SPECTROSCOPY	18 Hours						
	ELECTRONIC SPECTROSCOPY OF MOLECULES: Electronic spectra							
	of diatomic molecules The Franck-Condon principle - Dissociation energy							
	and dissociation products - Rotational fine structure of electronic vibration							
	transitions.							
	ESR: Theory of ESR – Resonance conditions – Experimental study – ESR							
	spectrometer – Crystalline solids and free radicals in solution – Determination							
	of g factor.							
	(Content- 12 Hrs, Assessment -3 Hrs) (15 Hrs)							
Unit VI	Infrared (IR) Spectroscopy	Project						
	Ultraviolet-Visible (UV/Vis) Spectroscopy							
	Nuclear Magnetic Resonance (NMR) Spectroscopy							
	Raman Spectroscopy							
	X-Ray Spectroscopy.							
Text	Gupta kumar Sharma - Elements of Spectroscopy -10th Edition							
Books:	2. C.N. Banwell, Fundamentals of Molecular Spectroscopy (McGraw Hil	l, New York,						
	1981).							

Reference	1.J.	Michael Hollas, Modern Spectroscopy (Wiley India, New Delhi, 2004).								
Books:	2.B.	P. Straughan and S. Walker, Spectroscopy Volumes IIII (Chapman and Hall, New								
	York, 19	York, 1976).								
Web-	1. l	1. https://guides.lib.unc.edu/spectroscopy/general.								
Resources:	2. I	nttps://guides.lib.unc.edu/spectroscopy/general.								
	3E	lectronMicroscopy-PrinciplesandFundamentals-S.Amenlinckx,etal.,(Wiley-								
	VCH,1997) WW.pdf									
Course	CO 1:	Explain what it means to use Spectroscopic methods for qualitative and quantitative								
Outcome:		analysis.								
	CO 2:	Compare and contrast of atomic and molecular spectra.								
	CO 3:	Explain the difference between stokes and anti-stokes line in a Raman spectrum.								
	CO 4:	Understanding of Quantum theory and NMR spectroscopy.								
	CO 5:	The probability of transition between vibration levels of two electronic states								
		determined by Frank-Condon principle.								

CO/PO			PO					PSO		
	1	2	3	4	5	1	2	3	4	5
CO1	S	S	S	S	S	S	M	S	S	S
CO2	S	S	S	S	S	S	M	M	S	S
CO3	S	M	M	S	S	S	S	S	S	S
CO4	S	S	S	S	S	S	S	S	S	S
CO5	S	S	M	S	S	S	S	S	M	S

Core Course & Title	CORE PRACTICAL - I PHYSICS DRACTICAL I (CENEDAL AND ELECTRONICS) DODE
Class	PHYSICS PRACTICAL I (GENERAL AND ELECTRONICS) - PGPE I MSc Physics Semester I
Course Objectives	 Experimental determination of certain Physical constants and properties. Verification of characteristics and applications of electronic components and devices. Resolving power of optical equipment can be learnt firsthand. In the laboratory course, the hands-on experience of using various optical instruments and making finer measurements of wavelength of light using Michelson interferometer, Fresnel Biprism etc. Understand the phase shifter, Wein bridge oscillator, Saw tooth and Stair case waves generators using op-amp comparator.
Cognitive Level	 K-1 Acquire/Remember K-2 Understand K-3 Apply K-4 Analyze K-5 Evaluate K-6 Create
1.	Determination of q, n, σ by elliptical fringes method
2.	Determination of q, n, σ by Hyperbolic fringes method
3.	Determination of Stefan's constant
4.	Determination of bulk modulus of a liquid by ultrasonic wave propagation
5.	Determination of Rydberg's constant
6.	Study of Hall effect in a semiconductor
7.	Michelson interferometer Determination of wavelength of monochromatic source.
8.	Determination of wavelength of monochromatic source using biprism
9.	Charge of an electron by spectrometer
10.	Photo electric Effect-determination of Planck's Constant.
11.	Determination of thermal conductivity of a good conductor – Forbe's method

12.	Ban	Band gap energy of a semiconductor Four-probe method				
13.		rizability of liquids by finding the refractive indices at different elengths				
14.	_	Magnetic susceptibility of a paramagnetic solution using Quincke's tube method				
15.	Dete	ermination of magnetic susceptibility of liquid by Guoy method.				
16.	Calibration of thermistor.					
Course Outcome:	CO 1: This programme could provide skilled in electronic principles					
	CO 2:	Helps students to acquire conceptual knowledge on various kinds of Electronic devices.				
	CO 3:	Learned about to basic concept of Hyperbolic fringes and elliptical fringes				
	CO 4:	Develop and analysis of IC fabrication and Electronics measuring Instruments of CRO.				
	CO 5:	To design the basic operational amplifier phase shifter, Wein bridge oscillator, Saw tooth and Stair case waves generators using op-amp comparator.				

TTUPPIN	wapping of cos with 1 os & 1 sos:									
CO/PO		PO					PSO			
	1	2	3	4	5	1	2	3	4	5
CO1	S	S	S	S	S	M	M	S	S	S
CO2	S	S	M	S	S	M	S	S	S	S
CO3	S	M	S	M	M	M	S	S	S	S
CO4	S	S	S	S	S	S	S	S	S	S
CO5	S	S	S	S	S	S	S	S	S	S

Core Course &	CORE COURSE V								
Title	/ ELECTRO MAGNETIC THEORY - PGPF								
Class	I MSc Physics	Semester	II						
Course		elds produced by stationary and m	oving charge and						
Objectives		tion of electromagnetic fields.							
	Achieve an understanding o	f the Maxwell's equations, role	of displacement						
	current, gauge transformation	ons, scalar and vector potential	s, Coulomb and						
	Lorentz gauge, boundary con-	ditions at the interface between di	fferent media.						
	Apply Maxwell's equations to deduce wave equation, electromagnetic field								
	energy, momentum and angular momentum density.								
	Analyze the phenomena of	wave propagation in the unbo	unded, bounded,						
	vacuum, dielectric, guided and unguided media.								
	Understand the features of planer optical wave guide and obtain the Electric								
	field components, Eigen value equations, phase and group velocities in a								
	dielectric wave guide.								
Cognitive Level	K1 -Recalling								
	K2 -Understanding								
	K3 -Applying								
	K4 - Analyzing								
	K5 - Evaluating								
	K6 - Creating								
Unit I	ELECTROSTATICS AND POLA	RIZATION	18 Hours						
	Gauss's law – Field due to an infinit	e, straight, uniformly charged wir	re –						
	Multipole expansion of a charge dis	Multipole expansion of a charge distribution Field inside a uniformly							
	polarized sphere – Electric field	d inside a dielectric – Elec	tric						
	displacement and polarizability -	- Claussius- Mossotti relation	_						
	Polarization of polar molecules and Langevin equation and Debye								
	relation – Electrostatic energy.								
	(Content- 15 Hrs, Assessment -3 Hrs) (18 Hrs)								

Unit II	BOUNDARY VALUE PROBLEMS IN ELECTROSTATICS	18 Hours
	Boundary conditions - Potential at a point between the plates of a	
	spherical capacitor - Potential at a point due to uniformly charged disc -	
	Method of image charges - Point charge in the presence of a grounded	
	conducting sphere- Point charge in the presence of a charged, insulated	
	conducting sphere Conducting sphere in a uniform electric field -	
	Laplace equation in rectangular coordinates. (Content- 15 Hrs,	
	Assessment -3 Hrs) (18 Hrs)	
Unit III	MAGNETO STATICS	18 Hours
	Magnetic scalar and vector potentials - Magnetic dipole in a uniform	
	field - Magnetization current - Magnetic intensity - Magnetic	
	susceptibility and permeability- Hysteresis - Correspondences in	
	electrostatics and magneto statics.	
	(Content- 15 Hrs, Assessment -3 Hrs) (18 Hrs)	
Unit IV	FIELD EQUATIONS AND CONSERVATION	18 Hours
	Continuity equation - Displacement current - Maxwell's equations and	
	their physical significance – Poynting theorem – Energy in	
	electromagnetic fields – Electromagnetic potentials – Maxwell's	
	equations in terms of electromagnetic potentials – Lorentz and Coulomb	
	gauges.	
	(Content- 15 Hrs, Assessment -3 Hrs) (18 Hrs)	
Unit V	ELECTROMAGNETIC WAVES AND WAVE PROPAGATION	18 Hours
	Electromagnetic waves in free space - Propagation of electromagnetic	
	waves in isotropic dielectrics and in anisotropic dielectrics - Reflection	
	and refraction of electromagnetic waves: Kinematic and dynamic	
	properties – TM and TE modes – Propagation in rectangular waveguides	
	- Cavity resonator. (Content- 15 Hrs, Assessment -3 Hrs) (18 Hrs)	
Unit VI	Dispersion relations in plasma	Group
	 Lorentz invariance of Maxwell's equation 	

	 Transmission lines and waveguides Radiation- from moving charges and dipoles and retarded potentials. 							
Text Books:	 J.D. Jackson, Classical Electrodynamics (John-Wiley, New York, 1999) 3rd edition. K.K. Chopra and G.C. Agarwal, Electromagnetic Theory (K. Nath& Co., Meerut). 							
Reference Books:	 D.J. Griffiths, <i>Introduction to Electrodynamics</i> (Pearson, Essex, 2014) 4th edition. T.L. Chow, <i>Electromagnetic Theory</i> (Jones and Bartlett Learning, 2012). 							
Web- Resources:	 Elements of Electromagnetic theory.pdf Griffiths-Introduction to Electrodynamics 3e(prentice,1999).pdf 							
Course Outcome:	CO 1: The theory of electromagnetic propagation of electromagnetic fields. CO 2: Learn the boundary value problem in electrostatics methods of image charges. CO 3: Understand Maxwell equation and its physical significance. CO 4: Learn Electromagnetic waves and wave propagation. CO 5: Understand magneto static and magnetic dipole.							

CO/PO		PO			PSO					
	1	2	3	4	5	1	2	3	4	5
CO1	S	M	M	S	M	M	S	S	S	S
CO2	S	S	S	S	S	S	S	S	S	S
CO3	S	S	S	S	S	S	S	S	S	S
CO4	S	M	M	M	M	M	S	S	S	S
CO5	S	S	S	S	S	S	S	S	S	S

Core Course & Title	CORE COURSE VI / QUANTUM MECHANICS PGPG					
Class	I MSc Physics	Semester	II			
Course Objectives	 To learn the fundamental concepts and certain theoretical methods of quantum mechanics and their applications to microscopic systems. To discuss the concepts of wave/particle duality, probability distributions and wave functions. To acquire working knowledge of quantum mechanics postulates on the evolution of physical systems. To apply the postulates of quantum mechanics to simple harmonic oscillator. To understand relativistic Quantum mechanics. 					
Cognitive Level	K1 -Recalling K2 -Understanding K3 -Applying K4 - Analyzing K5 - Evaluating K6 - Creating					
Unit I	SCHRÖDINGER EQUATION AND GENERAL 18 Hours FORMULATION Schrödinger equation and its plane wave solution – Physical meaning and conditions on the wave function – Expectation values— Hermitian operators and their Properties – Commutator relations Uncertainty relation Bra and Ket vectors – Hilbert space – Schrödinger, Heisenberg and interaction pictures. (Content- 15 Hrs, Assessment -3 Hrs) (18 Hrs)					
Unit II	EXACTLY SOLVABLE SYSTEMS Linear harmonic oscillator: Solving the one-dimensional Schrödinger equation and abstract operator method – Particle in a box Rectangular barrier potential –Rigid rotator – Hydrogen atom. (Content- 15 Hrs, Assessment -3 Hrs) (18 Hrs)					
Unit III	APPROXIMATION METHOL	OS	18 Hours			

	TIME-INDEPENDENT PERTURBATION THEORY: Non-degenerate (first-order) and degenerate perturbation theories Stark effect – WKB approximation and its application to tunneling problem and quantization rules. TIME-DEPENDENT PERTURBATION THEORY: Constant and harmonic perturbations – Transition probability – Sudden approximation. (Content- 15 Hrs, Assessment -3 Hrs) (18 Hrs)	
Unit IV	SCATTERING THEORY AND ANGULAR MOMENTUM SCATTERING THEORY: Scattering amplitude and cross- section – Green's function approach Born approximation and its application to square-well and screened-Coulomb potentials. ANGULAR MOMENTUM: Components of orbital angular momentum – Properties of L and L2 Eigen pairs of L2andLz— Spin angular momentum. (Content- 15 Hrs, Assessment -3 Hrs) (18 Hrs)	18 Hours
Unit V	RELATIVISTIC QUANTUM MECHANICS KleinGordon equation for a free particle and its solution – Dirac equation for a free particle and Dirac matrices Charge and current densities – Plane wave solution – Negative energy states – Zitterbewegung – Spin of a Dirac particle – Spin-orbit coupling. (Content- 15 Hrs, Assessment -3 Hrs) (18 Hrs)	18 Hours
Unit VI	 Spin-orbit coupling, fine structure WKB approximation, elementary theory of scattering Relativistic quantum mechanics (Klein-Gordon and Dirac equations), the semi-classical theory of radiation Tunneling through a barrier Time dependent perturbation theory and Fermi's golden rule, selection rules. 	Group discussion
Text Books:	 1. 1.V. Devanathan, Quantum Mechanics, Naroso Publishing Hou 2. 2.S. Rajasekar and R.Velusamy, Quantum Mechanic Fundamentals (CRC Press, Boca Raton, 2015). 	

Reference Books:	2. I	 R. Shankar, <i>Principles of Quantum Mechanics</i> (Springer, New Delhi, 2007). L. Schiff, <i>Quantum Mechanics</i> (Tata McGraw Hill, New Delhi, 2014) 4th edition. 				
Web-Resources:	2.	1.Introduction to quantum Mechanics.pdf 2.Introduction to quantum theory and Atomic structure-P.A.Cox.pdf 3.Quantum Mechanics- A Modern Development-L.Ballentine.pdf				
Course Outcome:	CO 1:	Solves the time-independent Scrondinger equation as an solve intermediate step to solve the time dependent Scrondinger equation.				
	CO 2:	Identifies correctly the mathematical space that contains all possible states of a physical system, using Dirac 's equation.				
	CO 3:	Build a Hilbert space based on a complete set commuting observables.				
	CO 4:	Relativistic Quantum mechanics understanding the Klein Gordon equation for a free particle and Dirac equation for a free particle and Dirac matrices.				
	CO 5:	Compute the energy levels and evaluation the quantum simple harmonic oscillator.				

CO/PO		PO			PSO					
	1	2	3	4	5	1	2	3	4	5
CO1	S	S	S	S	S	S	S	S	S	S
CO2	S	S	S	S	S	S	S	S	S	S
CO3	S	S	S	S	S	S	M	S	M	M
CO4	S	S	S	S	S	S	S	S	S	S
CO5	S	S	S	S	S	S	S	S	S	S

Core Course & Title	PHYSICS PRACTICAL II (GENERAL AND ELECTRONICS) PGPHY							
Class	II MSc Physics	Semester	III					
Course Objectives	 To gain practical knowledge by applying the experimental methods to correlate with the physics theory. To learn the usage of general practical systems for various measurements. Apply the analytical techniques and graphical analysis to the experimenta data. To develop intellectual communication skills and discuss the basic principles of scientific concepts in a group. Practice different types of wiring and instruments connections keeping in mind technical, Economical, safety issues. 							
Cognitive Level	K1 -Recalling K2 -Understanding K3 -Applying K4 - Analyzing K5 - Evaluating K6 - Creating							
Unit I								
	Electronics Experim	nents						
1.	1. Characteristics of LED and ph	noto diodes						
2.	2. Characteristics of laser diode	and tunnel diode						
3.	3. Digital to analog converters us	sing op-amp						
4.	4. Study of phase-shift oscillator	using op-amp						
5.	5. Design and study of Schmitt to	rigger using op-amp						
6.	6 Astable and monostable multiv	ribrators using IC555						
7.	7. Characteristics of UJT							
8.	8. Characteristics of SCR							
9.	9. Design and study of Wein brid	lge oscillator using op-amp						
10.	10. Design and study of square AMP.	e and triangular waves genera	ators using OP					

11.	11.Flip-f	11.Flip-flops RS,JK,& D				
12.	12.Deco	der,Encoder				
13.	13. Char	acteristics of FET				
14.	14.Chara	acteristics of LDR.				
15.	15 FET A	15 FET Amplifier				
Course Outcome:	CO 1:	Able to use radio astronomical data to measure physical properties of astronomical targets.				
	CO 2:	Identify and solve basic communication problems, analyse transmitter and receivers.				
	CO 3:	Demonstrate measuring of basic medical parameters.				
	CO 4:	Analyse the radio channel characteristics and the cellular principles				
	CO 5:	Ability to analyse improved data services in cellular communication.				

	-wpp8 or one with ros of rossy									
CO/PO	PO			PSO						
	1	2	3	4	5	1	2	3	4	5
CO1	S	S	S	S	S	S	S	S	S	S
CO2	S	S	S	S	S	S	S	S	S	S
CO3	S	S	S	S	S	S	M	S	M	M
CO4	S	S	S	S	S	S	S	S	S	S
CO5	S	S	S	S	S	S	S	S	S	S

Course & Title	ELECTIVE COURSE I / MICROPROCESSOR AND MICROCONTROLLER – PGPE1						
Class	I MSc Physics	Semester	II				
Course Objectives	 To understand the basic concept of microprocessor. To understand techniques for faster execution of instructions and improve speed of operation and performance microprocessors. To learn the fundamental programming concept and methodologies. To understand the basic architecture of intel 8085 microprocessor. To practice the fundamental programming methodologies in c programming language. 						
Cognitive Level	K1 -Recalling K2 -Understanding K3 -Applying K4 - Analyzing K5 - Evaluating K6 - Creating						
Unit I	MICROPROCESSOR ARCHITECTURE AND INTERFACING Intel 8085 microprocessor architecture – Pin configuration – Instruction cycle – Timing diagram – Instruction and data formats – Addressing modes Memory mapping and I/O mapping I/O scheme Memory mapping I/O interfacingData transfer schemes Synchronous and asynchronous data transfer – Interrupt driven data transfer - Interrupts of Intel 8085. (Content- 12 Hrs, Assessment -3 Hrs) (15 Hrs)						
Unit II	UNIT II ASSEMBLY LANGUAGE PROGRAMS (8085 ONLY) BCD arithmetic –Addition and subtraction two 8-bit and 16-bit numbersLargest and smallest numbers in a data set – Ascending order						

	and descending order -Sum of a series of a 8-bit numbers - Sum of a						
	series of multibyte decimal numbers – Square root of a number – Block						
	movement of data Time delay –Square-wave generator.						
	(Content- 12 Hrs, Assessment -3 Hrs) (15 Hrs)						
Unit III	PERIPHERAL DEVICES AND MICROPROCESSOR	18 Hours					
	APPLICATIONS						
	Generation of control signals for memory and I/O devices - I/O ports						
	Programmable peripheral interface – Architecture of 8255A -Control						
	word—Programmable interrupt controller (8259) 8279- Key board						
	interfacing- Programmable counter- Intel 8253 -Architecture, control						
	word and operation – Block diagram and interfacing of analog to digital						
	converter (ADC 0800) - Digital to analog converter (DAC 0800)-						
	Stepper motor – Traffic control.						
	(Content- 12 Hrs, Assessment -3 Hrs) (15 Hrs)						
Unit IV	MICROCONTROLLER 8051	18 Hours					
	Features of 8051– Architecture –Pin configuration –Memory						
	organization External data and program memory Counters and timers						
	- Serial data input/output- Interrupt structure - External interrupts -						
	Addressing modes Comparison between microprocessor and						
	microcontroller.						
	(Content- 12 Hrs, Assessment -3 Hrs) (15 Hrs)						
Unit V	8051 INSTRUCTION SET AND PROGRAMMING	18 Hours					
	Instruction set - Data transfer, arithmetic and logical instructions -						
	Boolean variable manipulation instructions - Program and machine						
	control instructions - Simple programs - Addition and subtraction of						
	two 8-bit and 16-bit numbers - Division - Multiplication Largest						
	number in a set – Sum of a set of numbers.						
	(Content- 12 Hrs, Assessment -3 Hrs) (15 Hrs)						

	2. I	(DhanpatRaiPub., New Delhi,2006). R. Gaonkar, Microprocessor Architecture, Programming and Applications with 8085
Reference Books:	2. S 3. A	M.A. Mazidi, J.G. Mazidi and R.D. Mckinlay, The 8051 Microcontroller and Embbeded Systems using Assembly and C (Dorling Kindersley, New Delhi, 2013). A.P. Godse and D.A.Godse, Microprocessors and Microcontrollers (Technical Pub., Pune, 2008).
Web- Resources:		https://www.javatpoint.com/microprocessor-vs-microcontroller https://www.vssut.ac.in/lecture_notes/lecture1423813120.pdf
Course Outcome:	CO 1: CO 2: CO 3: CO 4:	Write programs to run on 8085 microprocessor. Understand and device techniques for faster execution of instruction, improve speed of operations. Understand microprocessor and its advantage. Describe the fundamental components of a C program e.g source file, header file, main function, functions and libraries. Explain and apply fundamental syntax rules for identifies, declarations, expressions, statements and functions.

	mapping of cos mail of a loos.									
CO/PO		PO			PSO					
	1	2	3	4	5	1	2	3	4	5
CO1	S	S	S	S	S	S	S	S	S	S
CO2	S	S	S	S	S	S	S	S	S	S
CO3	S	S	S	S	S	S	S	S	S	S
CO4	S	M	S	S	S	S	M	M	S	S
CO5	S	S	S	S	S	S	S	S	S	S

Course & Title	Elective Course I / DATA COMMUNICATION AND COMPUTER					
	NETWORKS					
Class	I MSc Physics	Semester	II			
Course Objectives	TCP/IP).	ver model and key application 1				
	protocols.	• • •				
	 Learn sockets programmi programs. 	ng and how to implement clien	t/server			
	• Understand the concepts	of reliable data transfer and how	v TCP			
	implements these concepKnow the principles of concept	ts. ongestion control and trade-offs	in fairness			
	and efficiency.					
Cognitive Level	K-1 Acquire/Remember					
	K-2 Understand					
	K-3 Apply					
	K-4 Analyze					
	K-5 Evaluate					
	K-6 Create					
Unit I	Data transmission and encoding	Concepts: Analog and Digital	18 Hours			
	transmission, Transmission impa	irments-Transmission media-				
	Synchronous / Asynchronous tra	nsmission-Line				
	configurations-interfacing. Digital	al data digital signals-				
	Variations of NRZ and bi-phase-					
	ASK, FSK, PSK, QPSK-Analog	data digital signals-PCM,				
	DM.					
	(Content- 12 Hrs, Assessment -	3 Hrs) (15 Hrs)				
Unit II	Introduction and services - Error	detection and correction -	18 Hours			
	Multiple access protocols - LAN	s o Addressing & ARP - Link				
	virtualization o MPLS • Data cer	nter networking - Web request				
	processing - Data Link Control F	Flow control, Error control-				

	HDLC, Multiplexing. (Content- 12 Hrs, Assessment -3 Hrs) (15 Hrs)			
Unit III	Introduction to Computer Networks and the Physical Layer Introduction: The uses of computer networks-Network hardware-Network software-Reference models, Example of networks-Network standardization. The physical layer: The theoretical basis for data communication-Guided Transmission media-Wireless transmission. (Content- 12 Hrs, Assessment - 3 Hrs) (15 Hrs)	18 Hours		
Unit IV	Error detection and correction-Elementary data link protocols- Sliding window protocols-Example of data link protocols- ETHERNET. The network layer: Network layer design issues- Routing algorithms-Congestion control algorithms Ethernet o Switches o VLANs o PPP (Content- 12 Hrs, Assessment -3 Hrs) (15 Hrs)			
Unit V	The transport and the Application Layers The transport layer: Transport layer design issues-Transport protocols-Simple transport protocol- Internet transport protocols UDP, TCP. The application layer: Domain name system-Electronic mail-World Wide Web. (Content- 12 Hrs, Assessment -3 Hrs) (15 Hrs)	18 Hours		
Text Books:	 Edition, 2008. Andrew S. Tanenbaum, "Computer networks", Prentice-Hall of India, New Delhi, 4th edition 2005. Behrouz Forouzan, "Introduction to Data Communication and Networking", Tata McGraw-Hill, 2000. 			
Reference Books:	 Douglas E. Comer, "Internet working with TCP/IP-Volume-I", Prentice-Hall of India, 4th Edition, 2001. Paub and Schilling, "Principles of Communication System", MacGraw 			

	I	Hill, 1986.				
	3. J	3. James F. Kurose and Keith W. Ross, "Computer Networking-A top				
	C	down Approach Featuring the Internet", Pearson Education, Asia, 3rd				
	I	Edition-2006.				
Web-Resources:	1. http://nptel.ac.in/courses/106105082/					
	2. http://www.networkworld.com/blogs					
Course Outcome:	CO 1:	Understand importance of data communication systems and				
		fundamentals.				
	CO 2: Distinguish and relate various physical Medias, interfacing standar					
		and adapters.				
	CO 3:	Explain various flow control techniques.				
	CO 4: Analyze short range and long range wireless technologies					
	CO 5:	Analyze various modulation technique in analog and digital careery				
		system				

CO/PO	PO			PSO						
	1	2	3	4	5	1	2	3	4	5
CO1	S	S	S	S	M	S	S	S	S	S
CO2	S	M	S	S	S	S	S	S	S	M
CO3	S	S	S	S	M	S	S	S	S	S
CO4	S	M	S	S	M	S	S	S	S	S
CO5	S	S	S	S	S	S	S	S	M	S

Course &	ELECTIVE COURSE II / NUMERICAL METHODS AND C++				
Title		PROGRAMMING			
	PGPE2				
Class	I MSc Physics	Semester		II	
Course Objectives	 To learn the necessacity of methods of least square for fitting a graph. To learn the numerical methods of computing certain mathematical quantities, construction and evaluation of a function and solution of an ordinary differential equation. To Write C++ computer programming necessary for numerical simulation of physical problems. Know about the basis theory of errors, their analysis, estimation with examples of 				
Cognitive Level	simple experiments in physics. • Learn to write C++ Program for all the methods. K1 -Recalling				
	K2 -Understanding K3 -Applying K4 - Analyzing K5 - Evaluating K6 - Creating				
Unit I	CURVE FITTING AND INTECURVE FITTING: Method Exponential and power-law fits. INTERPOLATION: Newton interpolation, Higher-order production of the content of	of least-squares - Straight-land interpolation polynomial polynomials and first-order interpolation polynomials —	: Linear	18 Hours	
Unit II	SOLUTIONS OF LINEAR AN SIMULTANEOUS LINEAR E			18 Hours	

	back substitution -Augmented matrix Gauss elimination method	
	Jordan's modification Inverse of a matrix by GaussJordan method.	
	ROOTS OF NONLINEAR EQUATIONS: Bi-section method and	
	NewtonRaphson method.	
	(Content- 12Hrs, Assessment -3 Hrs) (15 Hrs)	
	(Content-12111s, Assessment -5 111s) (15 111s)	
Unit III	NUMERICAL INTEGRATION AND DIFFERENTIATION	18 Hours
	NUMERICAL INTEGRATION: Trapezoidal and Simpson's 1/3 rules	
	Errors in the formulae Composite trapezoidal and Simpson's 1/3 rules	
	Simpson's 3/8 rules - Errors in the formulae.	
	(Content- 12 Hrs, Assessment -3 Hrs) (15 Hrs)	
Unit IV	PROGRAMMING IN C++	18 Hours
	Constants and variables I/O operators and statements Header files	
	Main function - Conditional statements Switch statement Void	
	function Function program For, while and do-while statements	
	Break, continue and go to statements - Arrays.	
	(Content- 12 Hrs, Assessment -3 Hrs) (15 Hrs)	
Unit V	PROGRAMMING IN C++	18 Hours
	1. Least-squares curve fitting – Straight-line fit	
	2. Least-squares curve fitting – Exponential fit	
	3. Real roots of one-dimensional nonlinear equations Newton Raphson	
	method 4. Compley roots of one dimensional negligeon equations. Negligeon	
	4. Complex roots of one-dimensional nonlinear equations Newton	
	Raphson method	
	5. Interpolation – Lagrange method6. Numerical integration – Composite trapezoidal rule	
	7. Numerical integration – Composite Simpson's 1/3 rule	
	(Content 1) Ura Assassment 2 Ura) (15 Ura)	
	(Content- 12Hrs, Assessment -3 Hrs) (15 Hrs)	

Reference	1.	E. Balagurusamy, Objected Oriented Programming in C++ (McGraw Hill, New Delhi, M.K. Jain, S.R.K. Iyengar and R.K. Jain, Numerical Methods for Scientific and
Books:		Engineering Computation (New Age International, New Delhi, 1993).
DOOKS.		J.H. Mathews, Numerical Methods for Mathematics, Science and Engineering
		(Prentice-Hall of India, New Delhi, 1998).
Web-	1.Funda	amental of Numerical Methods and Data Analysis-G.Collins.pdf
Resources:		
Course	CO 1:	To Equip them with sufficient Knowledge base of physics so that they do not
Outcome:		find any difficulty pursuing higher Education
	CO 2:	Trained practical exposure which could equip to face the challenges in Physics.
	CO 3:	Understanding the Programming in C++ in constants and variables of the functions
	CO 4:	To Write C++ computer programming necessary for numerical integration to trapezoidal and simpson 's 1/3 rule
	CO 5:	Understand the various statements and Arrays.

Trupping of ook with 1 ok of 1 ook										
CO/PO	PO					PSO				
	1	2	3	4	5	1	2	3	4	5
CO1	S	S	S	S	S	S	S	S	M	M
CO2	S	S	S	S	S	S	S	S	S	S
CO3	S	S	S	S	S	S	S	S	S	S
CO4	S	S	S	S	S	S	S	S	S	S
CO5	M	M	S	S	S	S	S	S	M	S

Course & Title	ELECTIVE COURSE II / COMPUTER ORGANIZATION								
Class	I MSc Physics	Semester	II						
Course Objectives	 memory and peripherals. Understand the modern Performance measuremen In addition to the computer. 	ormance of a computer using the performan	ts. Also the system of						
Cognitive Level	K1 -Recalling K2 -Understanding K3 -Applying K4 - Analyzing K5 - Evaluating K6 - Creating								
Unit I	1 · · · · · · · · · · · · · · · · · · ·	emory Unit, Arithmetic and Logic Unit, Operational Concepts, Bus Structures. 3 Hrs) (15Hrs)	18 Hours						
Unit II	Little Endian Assignments, Variatives and character string Instruction sequencing, Register notation, Basic instruction types sequencing, Branching, Collimplementation of variables a Indexing and arrays, Relative a Language, Assembler directives	es, Byte Addressability, Big Endian and Word Alignment, Accessing numbers, s, Memory Operations, Instruction and Transfer notation, Assembly Language s, Instruction execution and straight line	18 Hours						
Unit III	or Logic operation, Fetching a	egister transfers, Performing an Arithmetic word from memory, Storing a word in applete Instruction, Branch instructions,	18 Hours						

	Multiple Bus Organization, Hardwired Control(basic block diagram only), A complete processor, Basic organization of Micro programmed Control Unit(Content- 12 Hrs, Assessment -3 Hrs) (15Hrs)							
Unit IV	Input Output Organization Accessing I/O Devices, Interrupts, Interrupt Hardware, Enabling and Disabling\ Interrupts, Handling Multiple Devices, Controlling Device requests, Exceptions, Direct Memory Access, Bus arbitration, Buses, Synchronous bus, Asynchronous bus, Interface Circuits, Parallel port and Serial port (Basic concept only), Standard I/O Interfaces (Basic concepts only), Peripheral Component Interconnect (PCI) Bus, SCSI Bus(Basic concepts only), Universal Serial Bus (USB) (Basic concepts only) (Content- 12 Hrs, Assessment -3 Hrs) (15Hrs)							
Unit V	The Memory System Some Basic Concepts, Semiconductor RAM Memories, Internal Organization of memory chips, Static Memories, Asynchronous DRAMs, Synchronous DRAMs, Structure of larger memories, Memory system consideration, Rambus memory, Read-Only Memories- ROM, PROM, EPROM, EEPROM, Flash Memory, Speed, Size and Cost, Cache Memories (Content- 12 Hrs, Assessment -3 Hrs) (15Hrs)	18 Hours						
Text Books:	 Computer Organization, Carl Hamacher, zvonko Vranesic and Safwat Zal Hill, 5th edition Advanced Computer Architecture (A practical approach), Rajiv Chopra Revised edition, reprint 2014, ISBN8121930774 							
Reference Books:	 William Stallings, "Computer Organization and Architecture: Designing for Performance", Eighth Edition, Pearson. Computer architecture and organization, 4th edition, P Chakraborty, JAICO Publishers 							
Web- Resources:	 http://www.srmuniv.ac.in/downloads/computer_architecture.pdf http://www.dauniv.ac.in/downloads/CArch_PPTs/CompArchCh06L0pdf http://elearning.vtu.ac.in/06CS46.html http://nptel.ac.in/courses/Webcourse-%20Guwahati/comp_org_arc/web/ 							

Course	CO 1:	Recognize and explain the functional units of computers
Outcome:	CO 2:	Describe assembly languages and machine instructions by analyzing how the data is stored and fetched from memory.
	CO 3:	Explain the execution of complete instruction and bus organizations.
	CO 4:	Identify various interrupt handling mechanism and buses.
	CO 5:	Differentiate between different types of memories.

	rimpping of eas with last of the last									
CO/PO	PO				PSO					
	1	2	3	4	5	1	2	3	4	5
CO1	S	S	S	M	S	S	S	S	S	S
CO2	S	S	M	S	S	S	S	S	S	S
CO3	S	S	S	M	S	S	S	S	S	S
CO4	S	S	S	M	S	S	S	M	S	S
CO5	S	S	M	M	S	S	S	M	S	S

Core Course & Title	CORE COURSEVII / STATISTICAL MECHANICS PGPI							
Class	II MSc Physics	Semester	III					
Course Objectives	 Explain statistical physics and the thermodynamics as logical consequences of the postulates of statistical mechanics. Apply the principles of statistical mechanics to selected problems Carps the basis of ensembles approach in statistical mechanics to range of situations To learn the fundamental difference between classical and quantum statistics and learn about quantum statistical distribution law 							
Cognitive Level	K1 -Recalling K2 -Understanding K3 -Applying K4 - Analyzing K5 - Evaluating K6 - Creating							
Unit I	Thermodynamics Thermo dynamical laws and the entropy in reversible processes Thermodynamic functions- Enth Phase transitions –Clausius-Clay of state. (Content- 15 Hrs, Asse	Principle of increase of enalpy, Helmholtz and Gibbs fur peron equation –Van der Wall	entropy nctions	rs				
Unit II	Kinetic Theory Boltzmann transport equation and -Relation between H-function distributionMean free path phenomena – Viscosity of gase process. (Content- 15 Hrs, Assessment	oltzmann Transport	rs					
Unit III	Classical Statistical Mechanics Review of probability theory Statistical ensembles - Densit Maxwell—Boltzmann distribution Ideal gas - Entropy - Partition Canonical and grand canonical Assessment -3 Hrs) (18 Hrs)	y function Liouville's th on law Micro canonical en on function – Equipartition tl	eorem semble - neorem -	rs				

Unit IV	Basic co statistics of state quantum	Quantum Statistical Mechanics Basic concepts Ideal quantum gas BoseEinstein statistics Photon statistics Fermi-Dirac statistics Sackur-Tetrode equation Equation of state Bose-Einstein condensation Comparison of classical and quantum statistics. (Content- 15 Hrs, Assessment -3 Hrs) (18 Hrs)							
Unit V	Ideal Book Specific Ideal Fe paramag Ferroma	Applications of Quantum statistical Mechanics Ideal Bose System: Photons — Black body and Planck radiation — Specific heatof solids — Liquid helium. Ideal Fermi System: Properties — Degeneracy — Electron gas Pauli paramagnetism. Ferromagnetism: Ising and Heisenberg models. (Content- 15 Hrs, Assessment -3 Hrs) (18 Hrs)							
Unit VI	• C	 Onsager reciprocal relations. Green–Kubo relations. Landauer–Büttiker formalism. 							
Text Books:		 S.K. Sinha, <i>Introduction to Statistical Mechanics</i> (Narosa, New Delhi, 2007). K. Huang, <i>Statistical Mechanics</i> (Wiley Eastern Limited, New Delhi, 1963). 1. 							
Reference Books:	1. N 2. V	ringhal, Agarwal, Prakash, <i>Thermodynamics and Statisti</i> Prakashan, Meerut, 2003). V. Greiner, L. Neise and H. Stocker, <i>Thermodynamics and</i> Mechanics Springer, New York, 1995).	J						
Web- Resources:	2. w 3. N	1							
Course	CO 1:	They easily to determine the probability of any type of an ever	nt.						
Outcome:	CO 2:	Students have understood the concept of phase space and its v	olume.						
	CO 3:	They can easily distinguish between different types of statistics.	particles and						
	CO 4:	They can easily distribute bosons and fermions and clas among energy levels.	sical particles						

CO 5:	After studying Fermi Dirac Statistics, students have learnt to deal with many electron systems in real life.
-------	--

CO/PO	PO				PSO					
	1	2	3	4	5	1	2	3	4	5
CO1	S	S	S	S	S	S	S	S	S	S
CO2	S	S	S	M	S	S	S	S	S	S
CO3	S	S	S	S	S	S	S	S	S	S
CO4	S	S	S	S	S	S	S	S	S	S
CO5	S	S	S	M	S	S	S	S	S	S

Core Course & Title	CORE COURSE VIII / SOLID STATE PHYSICS PGPJ							
Class	II MSc Physics	Semester	III					
Course Objectives	 The course gives an introduction to solid state physics, and will enable the student to employ classical and quantum mechanical theories needed to understand the physical properties of solids. Emphasis is put on building models able to explain several different phenomena in the solid state. Understand the influence of lattice vibrations on thermal behavior Apply the free electron theory to solids to describe electronic behavior and Explain how a lattice vibrates at finite temperature, and how these vibrations determine the heat capacity and conduction. Know the concept density of states in one, two and three dimensions. Explain simple theories for conduction of heat and electrical current in metals. 							
Cognitive	K1 -Recalling							
Level	K2 -Understanding							
	K3 -Applying							
	K4 - Analyzing K5 - Evaluating							
	K6 - Creating							
Unit I	Lattice Vibrations and Thermal Properties Vibration of monatomic lattices – Lattices with two atoms per primitive cell –Quantization of lattice vibrations – Phonon momentum – Inelastic scattering of neutrons by phonons– Lattice heat capacity – Einstein model – Density of modes in one-dimension and three dimension– Debye model of the lattice heat capacity – Thermal conductivity – Umklapp process. (Content- 15 Hrs, Assessment -3 Hrs) (18 Hrs)							
Unit II	Free Electron Theory, Energy Bands and Semiconductor Crystal Energy levels and density of orbitals – Fermi-Dirac distribution – Free electron gas in 3D – Heat capacity of electron gas – Electrical conductivity – Motion in magnetic fields – Hall effect – Thermal conductivity – Nearly conductivity of metals – Nearly free electron model – Electron ina periodic potential –Semiconductors – Band gap – Effective mass – Intrinsic carrier concentration. (Content- 15 Hrs, Assessment -3 Hrs) (18 Hrs)							
Unit III								

	hysteresis. (Content- 15 Hrs, Assessment -3 Hrs) (18 Hrs)						
Unit IV	Basics of Nonlinear Optics Wave propagation in an anisotropic crystal — Polarization response of materials to light —Harmonic generation — Second harmonic generation — Sum and difference frequency generation— Phase matching — Third harmonic generation— Terahertz — Bistability — Self-focusing. Nonlinear Optical Materials Basic requirements — Inorganics — Borates — Organics — Urea, Nitroaniline — Semi organics — Thoreau complex — Laser induced surface damage threshold. (Content- 15 Hrs, Assessment -3 Hrs) (18 Hrs)						
Unit V	Thin Film physics and Deposition Techniques Principle of gel technique – Various types of gel Structure and importance of gel – Methods of gel growth and advantages Melt technique –Bridgeman method – Flux growth – Hydrothermal growth – Vapor-phase growth-Physical vapor deposition – Chemical vapor deposition. Vacuum evaporation E-beam, pulsed laser and ion beam evaporations - Glow discharge and plasmas Mechanisms and yield of sputtering processes – DC, RF, magnetically enhanced, reactive sputterings— Spray pyrolysis – Electro deposition – Sol-gel technique. (Content- 15 Hrs, Assessment -3 Hrs) (18 Hrs)						
Unit VI	 Electronic devices such as mobiles and computers Optical devices such as lasers and <u>fibre optics</u> Magnet based devices such as Magnetic Resonance Imaging (MRI) and vibrating devices Silicon-based logic and memory bits 	Project					
Text Books:	 C. Kittel, <i>Introduction to Solid State Physics</i> (Wiley Eastern, New Delhi, 2007)7th edition. S.O. Pillai, <i>Solid State Physics</i> (New Age International, New Delhi, 2005) 6thedition. H.C. Gupta, <i>Solid State Physics</i> (Vikas Publishing House, Noida, 2001) 2ndedition. 						
Reference Books:	 N.W, Ashcroft and N.D. Mermin, <i>Solid State Physics</i> (Holt, Rinehard Winston, Philadelphia, 1976). Rita John, <i>Solid State Physics</i> (McGraw Hill, New Delhi, 2014). 	t and					
Web- Resources:	1. www.math.ox.ac.uk 2. www.math.upenn.edu						

Course	CO 1:	Students will develop range of communication and teaching skills.
Outcome:	CO 2:	How diffraction of electromagnetic waves on solid matter can be used to obtain lattice structure.
	CO 3:	Know the concept of phonons, and how the dispersion relationship appears for different lattice structures.
	CO 4:	Explain how a lattice vibrates at finite temperature, and how these vibrations determine the heat capacity and conduction.
	CO 5:	Apply models to describe defects and diffusion.

11 8	/									
CO/PO	PO				PSO					
	1	2	3	4	5	1	2	3	4	5
CO1	S	S	S	M	S	S	S	M	S	S
CO2	S	S	S	M	M	S	S	S	S	S
CO3	S	M	M	S	S	S	S	S	M	S
CO4	S	S	S	S	S	S	M	S	M	S

Core Course & Title	CORE PRACTICAL III MICROPROCESSOR AND PROGRAMMING PGPKY						
Class	II MSc Physics Semester III						
Course Objectives	 To develop programming skills of microprocessor and C++ programming in solving some mathematical problems and their applications. In the laboratory he is expected to study of interfacing, Traffic control system, Control of stepper motor using microprocessor. To demonstrate simple programmes using assembly language and execute the programme using a µp 8085 kit. Write and solve the problems in curve fitting and Numerical Analysis. Write C++ programming algorithms, flowcharts. 						
Cognitive Level	K1 -Recalling K2 -Understanding K3 -Applying K4 - Analyzing K5 - Evaluating K6 - Creating						
	A. MICROPROCESSOR (8085)						
1.	Finding the largest and smallest numbers in a data array						
2.	Arranging a set of numbers in ascending and descending orders						
3.	Study of multibyte decimal addition						
4.	Study of multibyte decimal subtraction						
5.	Interfacing hexa key board (IC 8212)						
6.	Study of seven segment display						
7.	Study of DAC interfacing (DAC 0900)						
8.	Study of ADC interfacing (ADC 0809)						
9.	Traffic control system						
10.	Control of stepper motor using microprocessor						
	B. C++ PROGRAMMING						
1.	Least-squares curve fitting – Straight-line fit						
2.	Least-squares curve fitting – Exponential fit						

3.	Rea	Real roots of one-dimensional nonlinear equations Newton Raphson method					
4.	Cor	mplex roots of one-dimensional nonlinear equations Newton Raphson Method.					
5.	Inte	rpolation – Lagrange method					
6.	Nur	merical integration – Composite trapezoidal rule					
1.	Nur	Numerical integration – Composite Simpson's 1/3 rule					
Course Outcome:	CO 1:	Equip them with sufficient Knowledge base of physics so that they do not find any difficulty pursuing higher Education.					
	CO 2:	Trained practical exposure which could equip to face the challenges in Physics.					
	CO 3:	Understanding the Programming in C++ in constants and variables of the functions					
	CO 4:	Demonstrate simple programmes using assembly language and execute the programme using a µp 8085 kit.					
	CO 5:	Write C++ computer programming necessary for numerical integration to trapezoidal and simpson 's 1/3 rule					

	Trupping of Cos With 1 of the 1 of the									
CO/PO	PO						PSO			
	1	2	3	4	5	1	2	3	4	5
CO1	S	S	S	S	S	S	S	S	S	S
CO2	S	S	S	S	S	S	S	S	S	S
CO3	S	S	S	S	S	S	S	S	S	S
CO4	S	M	S	S	S	S	M	M	S	S
CO5	S	S	S	S	S	S	S	S	S	S

Course & Title	ELECTIVE COURSE-III / Nano Materials and Applications PGPE3						
Class	II MSc Physics	Semester	III				
Course Objectives	 To make the students Applications To help them under Nanotechnology. For Nanomaterials understands 		erials. ed fields. the Nanoscience and of Nanoscience and terization Techniques.				
Cognitive Level	K1 -Recalling		8,1				
Level	K2 -Understanding K3 -Applying K4 - Analyzing K5 - Evaluating K6 - Creating						
Unit I	Back ground of Nano technolo Scientific revolution-Emergence technology —Periodic Table, A Energy, Atomic size, surfaces ar (Content- 12Hrs, Assessment -3	of Nano technology, Challen, tomic structures, Molecules and dimensional space.					
Unit II	Preparation of Nano Materials Nano Material-Preparation-Top Bottom up, Self Assembly -Sol (Content- 12Hrs, Assessment -3	o down-ball milling,Nano gel -Hydro thermal method-Pol	lithography- yol Process				
Unit III	carbon nano structures Carbon molecules and carbon bo and its crystal Superconductivi - Structure - Electrical propert properties Applications (fuel co (Content- 12Hrs, Assessment -3)	ity in C60 Carbon nanotubes ies — Vibrational properties — ells, chemical sensors, catalysts	: Fabrication Mechanical				
Unit IV	Characterization of Nanomate Principles, experimental set-up, microscopy (SEM), transmission tunneling microscope (STM) and (Content- 12Hrs, Assessment -3	procedure and utility of scann on electron microscopy (TEM d scanning probe microscopy (S	f), scanning				

Unit V	Applications Molecular electronics and nanoelectronics — Nanorobots — Biological applications of nanoparticles - Catalysis by gold nanoparticles — Band-gap engineered quantum devices — Nanomechanics — CNT emitters — Photoelectrochemical cells — Photonic crystals — Plasmon waveguides.(Content- 12Hrs, Assessment -3 Hrs) (15Hrs)							
Text Books:	 1. 1.ManasiKarkare,Nano Technology Fundamentals and Applications. 2. K.InternationalPublishing House Limited. 3. CharlesP.Poole JRAnd Frank Owens."Introductionto Nanotechnology"Wiley,2003. 4. B.B.Laud,NonLinear Optics,2ndEdn.NewAge International (P)Limited.Delhi,1991. 							
Reference Books:	e Books: 1. RobertW.Boyd, Non Linear Optics, 2ndEdn.AcademicPress,Newyork,2003. 2. K.Ravichandran, K.Swaminathan,B.SakthivelC.Pavidoss Introduction to Characterization of Nano Material and Thin Films(Publication JAZYM Publication)							
Course Outcome:	CO 1: Understand the synthesis of nanomaterials and their application and the impact of nanomaterials on environment							
	CO 2: Apply their learned knowledge to develop Nanomaterial's.							
	CO 3: Choose appropriate synthesis technique to synthesize quantum nanostructures of desired size, shape and surface properties.							
	CO 4: Appreciate enhanced sensitivity of nanomaterial based materials and their novel applications in industry.							
	CO 5: Understand the synthesis of nanomaterials and their application and the impact of nanomaterials on environment							

CO/PO	PO			PO PSO						
	1	2	3	4	5	1	2	3	4	5
CO1	S	S	S	S	S	S	S	S	S	S
CO2	S	S	S	M	M	S	S	S	S	S
CO3	S	S	M	S	S	S	S	S	S	S
CO4	S	S	S	S	S	S	S	S	S	S
CO5	S	S	S	S	S	S	S	S	S	S

Course & Title	ELECTIVE COURSE-III / CRYSTAL PHYSICS PGPE3								
Class	II M.Sc Physics	Semester	III						
Course Objectives	 characterizing the grown This paper will serve as particularly in experimen To know the principles in the principles the advantamethod. To understanding the the solution, melt and vapour 	an eye opener for students ke tal physics. In the method involved in the gage and the disadvantages differences involve in crystal growth	en in research activities growth of crystal. know rent thin film deposition a nucleation process and						
Cognitive Level	K1 -Recalling K2 -Understanding K3 -Applying K4 - Analyzing K5 - Evaluating K6 - Creating								
Unit I	NUCLEATION Introduction-kinds of nucleation-equilibrium stability and Meta stable state-classical theory of nucleation-effect of soluble impurities on nucleation-determination of solubility-methods of induction period measurements-desupersaturation-steady state nucleation rate-nucleation parameters. (Content- 12Hrs, Assessment -3 Hrs) (15Hrs)								
Unit II	SOLUTION AND GEL GROV Low temperature solution gro gradient method-criteria for opti apparatus for solution growth. gelling mechanism-nucleation co methods- chemical reaction methods method-solubility (Content- 12Hrs, Assessment -	wth-slow cooling methods-termizing solution growth parameter Gel growth-structure of silicated parameters of gel method-expended-chemical reduction methods are reduction method-sol gel	ters-basic a gel and berimental I-complex						

Unit III	HIGH TEMPERATURE AND OTHER TECHNIQUES OF GROWTH Growth from melt-Bridgman, Czochralski, zone melting, Verneuil techniques-physical vapor deposition-flux growth-chemical vapor deposition chemical vapor transport-hydrothermal growth- epitaxial growth. (Content- 12Hrs, Assessment -3 Hrs) (15Hrs)	18 Hours						
Unit IV	OPTICAL STUDIES Atomic absorption spectroscopy-UV-Visible-NIR spectroscopy-Experimental set ups for Fourier Transform Infrared analysis, FT-Raman vibrational spectroscopy and NMR Illustrations with selected crystals-Nonlinear optical phenomenon (qualitative)-Kurtz powder SHG method-photoconductivity and schematic set up for measurements-negative photoconductivity. (Content- 12Hrs, Assessment -3 Hrs) (15Hrs)							
Unit V	CRYSTAL CHARACTERIZATION Thermal analysis-methods of thermal analysis-thermogravimetric analysis (TGA)-Differential thermal analysis (DTA)-Differential Scanning Calorimetry (DSC)-Mechanical studies-methods of hardness testing (qualitative)-Vickers hardness testing-correlation of microhardness with other properties-estimation of hardness number and work hardening coefficient (n)-dielectric studies-dielectric constant and dielectric loss measurements. (Content- 12Hrs, Assessment -3 Hrs) (15Hrs)	18 Hours						
Text Books:	 Brice J. C. (1986), 'Crystal Growth Process', John Wiley and Sons, New York. Brice J.C. (1973), 'The growth of crystals from liquids', North Holland publishing company, Amsterdam. Buckley H.E. (1951), 'Crystal Growth', John Wiley and Sons, New York. Pamplin B.R. (1980), 'Crystal Growth', Pergman Press, London. Henisch H.K. (1988), 'Crystals in gels and Liesegang rings', Cambridge Univ. Press. USA 							
Reference Books:	 R.T. Sane and Jagdish K Ghadge 'Thermal Analysis Theory and Quest Publications 1997 V G Dmitriev, G.G. Gurzadyan, D.N. Nikigosyan; 'Handbook optical crystals' Springer- Verlag 1991 Joshi V.N. (1990), 'Photoconductivity', Marcel Dekker, New York Santhanaraghavan P. and Ramasamy P. Crystal growth Process (2000) KRU Publications, Kumbakonam. 	of Nonlinear						

Course Outcome:	CO 1:	Students will learn about the fundamentals of
o decome.	CO 2:	Nucleation mechanism and different kinds of nucleation.
	CO 3:	To learn about important crystal growth technique like Bridgeman, czochralski (pulling method), solution growth and hydrothermal methods, physical and chemical vapor transport.
	CO 4:	To understand with various techniques involved in crystal growth.
	CO 5:	To determine various theoretical parameters.

Titappini	mapping of cos with 1 os to 1 sost									
CO/PO	PO						PSO			
	1	2	3	4	5	1	2	3	4	5
CO1	S	S	S	S	S	S	S	S	S	S
CO2	S	S	M	M	M	S	S	M	M	S
CO3	S	S	S	S	S	S	S	S	S	S
CO4	S	S	S	S	S	S	S	S	S	S
CO5	S	S	M	S	S	S	M	S	S	S

Course & Title	ELECTIVE COURSE-IV / COMMUNICATION PHYSICS - PGPE4								
Class	II MSc PHysics	Semester	III						
Course Objectives	 Students will demonstrate an understanding of multiple theoretical perspectives and diverse intellectual traditions in communication. Students will demonstrate an understanding of importance of free expression. Students will competency in human relational interaction. To understanding of professional and ethical responsibility. An ability to communicate effectively. 								
Cognitive Level	K1 -Recalling K2 -Understanding K3 -Applying K4 - Analyzing K5 - Evaluating K6 - Creating	K1 -Recalling K2 -Understanding K3 -Applying K4 - Analyzing K5 - Evaluating							
Unit I	WAVE PROPAGATION Fundamental of EM Waves - Free Space propagation –surface wave propagation –sky wave propagation space wave propagation-Troposphere scatter propagation-structure of Atmosphere-Virtual height-MUF-Lowest Usable Frequency-skip distance –Optimum length-duct propagation. (Content- 12Hrs, Assessment -3 Hrs) (15Hrs)								
Unit II	<u>-</u>	- DSBSC, SSB, VSB Technique ulation Signals-Generation of Al to PAM, PCM, PPM, PWM							
Unit III	ANGLE MODULATION TECHNIQUES Introduction of communication system- Elements of Communication System- Information-Transmitter, Channel, Receiver –Need for modulation-Theory of angle modulation techniques (FM, PM) - Comparison of Phase modulation and Frequency modulation- Characteristics of PM and FM –Practical issues in FM (Noise and Frequency Modulation) (Content- 12Hrs, Assessment -3 Hrs) (15Hrs)								
Unit IV	_	nentary doublet-Current and Volta s, Radiation Pattern and leng							

	Polariza Feed Po	contraction- Antenna Resonance- Band width, Beam width and Polarization – Grounded and ungrounded Antennas-Effect of Height-Feed Point-impedance Matching. (Content- 12Hrs, Assessment -3 Hrs) (15Hrs)							
Unit V	ANTENNAS Electromagnetic Radiation- Elementary doublet-Current and Voltage Distribution-Resonant Antennas, Radiation Pattern and length contraction- Antenna Resonance- Band width, Beam width and Polarization – Grounded and ungrounded Antennas-Effect of Height- Feed Point-impedance Matching. (Content- 12Hrs, Assessment -3 Hrs) (15Hrs)								
Text Books:		Kennedy and Davis, Electronic Communication System, Tata McGraw Hill,8th edition							
Web-Resources:	2. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3.	 www.math.ox.ac.uk www.math.upenn.edu. Mathematical Physics-A Modern Intro to its Foundations-S.Hassani(Springer,1999)WW.pdf 							
Course Outcome:	CO 1:	Demonstrate critical and innovative thinking							
	CO 2: Display competence in oral, written and visual communication								
	CO 3: Show an understanding of opportunities in the fie communication.								
	CO 4:	CO 4: Students will demonstrate an understanding of the impact of pand science on society							
	CO 5:	Identify the applications in communications.							

CO/PO		PO			PSO					
	1	2	3	4	5	1	2	3	4	5
CO1	S	S	S	S	M	S	S	S	S	S
CO2	S	S	M	S	S	S	S	S	S	S
CO3	S	M	M	S	S	S	S	S	S	S
CO4	S	S	S	M	M	S	S	S	S	S
CO5	S	S	S	S	M	S	S	S	S	S

Core Course & Title		TIVE COURSE-IV R AND FIBER OPTICS			
Class	II MSc Physics	Semester	IV		
Course Objectives Cognitive Level	 Learn the underlying physics of Lasers and laser systems by combining the knowledge of gain media together with the aspects of design, configuration and operation of lasers. Fundamental principles of stimulated emission and how to convert it into coherent light emission. The manipulation of light i. e. mode selection, continuous and pulsed generation, spectral narrowing etc. Applications of various lasers in various fields including scientific research to common use. 				
cognitive rever	K1 -Recalling K2 -Understanding K3 -Applying K4 - Analyzing K5 - Evaluating K6 - Creating				
Unit I	LASER AND FIBER OPTICS Lasers: Basic concepts of stimulated emission-Population inversion and metastable state-Ruby laser and He –Ne laser production – applications. Fiber optics: Introduction –Optical fiber – total –Critical angle - Principle of propagation of light through optical fibers – Type of optical fibers – Fiber optics communication system –Fiber optics sensors. (Content- 12Hrs, Assessment -3 Hrs) (15Hrs)				
Unit II	Laser Resonance and cavity mode ABCD law for Gaussian Beams; Ga ABCD law applied to cavities; Mode finesse; Photon lifetime; Resonance hrs 5. Laser oscillation: Threshold Oscillation and amplification in transition; Gain saturation; Oscillat Hole burning & Lamb dip. (Cont (15Hrs)	aussian beams in stable resonators; le volume, Resonance; Q- factor & e of Hermite – Gaussian modes. 8 condition; Oscillation frequency, a homogeneously broadened ions in an inhomogeneous system;	18 Hours		

Unit III Unit IV	FIBER OPTICAL SOURCES AND COUPLERS LED LED materials – fiber LED coupling – LASER – spatial emission pattern of LASER – modulation response of LASER – single frequency LASER – light emitting transistor. Optical Couplers: Types of optical couplers – star couplers – T couplers – source to fiber coupling efficiency – opto-couplers and applications. (Content-12Hrs, Assessment -3 Hrs) (15Hrs) ANALOG AND DIGITAL TRANSMISSION SYSTEM 18 Hours					
	Overview of analog links – multichannel transmission techniques – multichannel amplitude modulation – multichannel frequency modulation – digital transmission - line coding – NRZ codes RZ codes – Block codes(Content- 12Hrs, Assessment -3 Hrs) (15Hrs)					
Unit V	COHERENT OPTICAL FIBER COMMUNICATION SYSTEM Fundamental concepts – homodyne detection – heterodyne detection – modulation techniques – direct detection OOK – OOK homodyne detection – PSK homodyne detection – heterodyne detection schemes – polarization control requirements. (Content- 12Hrs, Assessment -3 Hrs) (15Hrs)					
Text Books:	 Optical Fiber Communication – Gerd Keiser – McGraw-Hill – 2nd Edition Optical Communication System – John Gowar – Prentice Hall of India – 2nd Edition Optical fiber and fiber optic communication system – Subirkumarsarkar- S.Chand – 4th Edition (2010). 					
Reference Books:	 Svelto O.: Principles of Lasers, (V Edition), Springer 2010. William Silfvast, Laser Fundamentals, Cambridge press, 2004. Verdeyen,J.T.: Laser Electronics, (III Edition) Prentice Hall, 1995. Govind P. Agarwal - Fiber Optic Communication System John Wiley & Sons (2002) 					
Web- Resources:	 https://www.ikbooks.com/home/samplechapter?filename=190_Sample-Chapter.pdf https://www.ikbooks.com/home/samplechapter?filename=190_Sample-Chapter.pdf 					
Course	CO 1: Understand the principle and structure of optical fibers.					

Outcome:	CO 2:	Understand the working principle of fiber optical sources and couplers and apply it in the optical communication systems.
	CO 3:	Apply the fundamental principles of optics and light wave to design optical fiber communication systems.
	CO 4:	Understand different analog and digital transmission systems.
	CO 5:	Understand and apply the concepts of coherent optical modulation and detection techniques.

Titapping	5 01 000	or eas with ras & rass.								
CO/PO		PO					PSO			
	1	2	3	4	5	1	2	3	4	5
CO1	S	S	S	S	S	S	S	S	S	S
CO2	S	S	S	S	S	S	S	S	S	S
CO3	S	S	S	S	S	S	S	S	S	S
CO4	S	S	S	S	S	S	S	S	S	S
CO5	S	S	S	S	S	S	S	S	S	S

Core Course & Title	CORE COURSE IX / NUCLEAR AND PARTICLE PHYSICS - PGPL				
Class	II MSc Physics	Semester	IV		
Course Objectives	 Introduce students to the fundamental principles and concepts governing nuclear and particle Physics Observational aspects of nuclei, including their binding energy, size, spin and parity Nuclear models: liquid drop and shell models. The semi-empirical mass formula and deductions from it concerning nuclear stability. The classification of fundamental particles and their interactions according to the Standard Model quark structure of mesons and baryons. 				
Cognitive Level	K1 -Recalling K2 -Understanding K3 -Applying K4 - Analyzing K5 - Evaluating K6 - Creating				
Unit I	Nuclear Properties Nuclear energy levels - Nuclear angular momentum, parity, isospin - Nuclear magnetic dipole moment - Nuclear electric quadropole moment - Ground state of deuteron - Magnetic dipole moment of deuteron - Proton-neutron scattering at low energies - Scattering length, phase shift- Nature and properties of nuclear forces - Spin dependence - Charge symmetry - Charge independence - Repulsion at short distances - Exchange forces - Meson theory. (Content- 15 Hrs, Assessment -3 Hrs) (18 Hrs)				
Unit II	Radioactive Decays Alpha emission — Geiger-Nuttal law — Gamow theory — Neutrino hypothesis —Fermi theory of beta decay — Selection rules — No conservation of parity —Gamma emission — Selection rules —Nuclear isomerism — Gamma ray spectroscopy — Mossbauer effect — Interaction of charged particles and X-rays with matter — Types and basic principles of particle detectors. (Content- 15 Hrs, Assessment -3 Hrs) (18 Hrs)				
Unit III	Nuclear Reactions and Nuclear Reciprocity theorem – Breit-V		18 Hours		

Unit IV	theory — Liquid drop model — Shell model — Evidences for shell model — Magic numbers — Harmonic oscillator — Square-well potential — Spin-orbit interaction — Collective model of a nucleus. (Content- 15 Hrs, Assessment - 3 Hrs) (18 Hrs) Fission and Fusion Reactors Characteristics of fission — Mass distribution of fragments — Radioactive decayprocesses — Fission cross-section — Energy in fission — Bohr-Wheeler's theory of nuclear fission — Fission reactors — Thermal reactors — Homogeneous reactors — Heterogen. (Content- 15 Hrs, Assessment - 3 Hrs) (18 Hrs)	18 Hours	
Unit V	Particle Physics Nucleons, leptons, mesons, baryons, hyperonseous reactors – Basic fusion processes Characteristics of fusion –Solar fusion – Controlled fusion reactors., hadrons, strange particles - Classification of fundamental forces and elementary particles – Basic conservation laws – Additional conservation laws: Baryonic, leptonic, strangeness and isospin charges/quantum numbers – Gell-mann—Nishijima23formula - Invariance under charge conjugation (C), parity (P) and time reversal (T) – CPT theorem Parity non conservation in weak interactions – CP violation – Eight-fold way and super multiplets – SU(3) symmetry and quark model.		
Unit VI	 Nuclear Diagnostics for Inertial Confinement Fusion Nuclear Threat Reduction and Global Security Forensic analysis of a nuclear explosion Nuclear Geophysics Nuclear Logging in the Oil, Gas, Coal, and Mineral Industries. Geo-neutrinos and the Earth's Internal Heat Nuclear Medicine Nuclear Imaging 	Field Visit	
Text Books:	 K. S. Krane, Introductory of Nuclear Physics (John-Wile 1987). S. B. Patel, Nuclear Physics: An Introduction (New Age 2009). D. C. Cheng and G. K. O'Neill, Elementary Particle Introduction (Addison-Wesley, New York, 1979). D.C. Tayal, Nuclear Physics (Himalaya Pub. House, 2011). 	e, New Delhi, Physics: An	

Reference Books:	2.]	R.C. Sharma, <i>Nuclear Physics</i> (K. Nath and Co, Meerut, 2004). B. L. Cohen, <i>Concepts of Nuclear Physics</i> (Tata McGraw Hill, New Delhi, 1988).				
Web-Resources:	 www.math.ox.ac.uk www.math.upenn.edu Mathematical Physics-A Modern Intro to its Foundations- S.Hassani(Springer,1999)WW.pdf 					
Course Outcome:	me: CO 1: Determine nuclear properties such as binding energy, spin and p in the framework of the liquid drop model and the shell model o nucleus. CO 2: Use the liquid drop model and the law of radioactive decay to desealpha-decay, beta-decay, fission and fusion, predict decay reac and calculate the energy release in nuclear decays CO 3: It will teach the students about the spin parity concept &magic Related to shell.					
	CO 4:	CO 4: About the scattering process how it will occur.				
	CO 5:	Explain the experimental evidence for quarks, gluons, quark confinement, asymptotic freedom, sea quarks, the running coupling constant and colour charge				

CO/PO	PO			PSO						
	1	2	3	4	5	1	2	3	4	5
CO1	S	S	S	M	M	S	S	S	M	S
CO2	S	S	S	M	M	S	S	S	S	S
CO3	S	S	S	S	S	S	S	S	S	S
CO4	S	S	M	M	S	S	S	S	S	S
CO5	S	S	S	S	S	S	S	S	S	S

Core Course & Title	Core Cours	Core CourseX / ADVANCED PHYSICS PGPM				
Class	II MSc Physics	Semester	II			
Course Objectives	 To learn the basics and the advanced applications of physics in the fields of Astrophysics, Biomedical and wireless communication. Understanding basic principles and phenomena in the area of medical diagnostic instrumentations. Introduce communication systems for space vehicles. To introduce the concepts and techniques associated with wireless communication system. To familiarize with state of art standards used in wireless cellular systems. 					
Cognitive Level	K1 -Recalling K2 -Understanding K3 -Applying K4 - Analyzing K5 - Evaluating K6 - Creating					
Unit I	Astrophysics and Radio Astronomy Astrophysics: Physical properties of stars - Life cycle of a star - Endproducts of stellar evolution – Structure of milky way - Expanding universe - Future prospects. Radio Astronomy (RA): Radio telescopes - Synchrotron radiation – Spectrallines in RA - Major discoveries in RA - RA in India - Hot big bang cosmology. (Content- 15 Hrs, Assessment -3 Hrs) (18 Hrs)					
Unit II	India's Space Programme Overview - Methodological issues in cost beneficial analysis of space programme - The INSAT system - Broadcasting - Telecommunication - Meteorology - Indian remote sensing programme - Geo informatics (basic idea only) - The launching programme. (Content- 15 Hrs, Assessment - 3 Hrs) (18 Hrs)					
Unit III	programme - The INSAT Telecommunication -Meteorolo	(Content- 15 Hrs, Assessment -3 Hrs) (18 Hrs) India's Space Programme Overview - Methodological issues in cost beneficial analysis of space				

	programme. (Content- 15 Hrs, Assessment -3 Hrs) (18 Hrs)			
Unit IV	Biomedical Instruments Ear and hearing Aids: Basic measurements of ear function - Air and bone conduction -Masking –Middle ear impedance audiometry - Otoacoustic emission - Types of hearing aids and Cochlea rim plants - Sensory substitution aids - Electrophysiology: Source of biological potentials – Signal size and electrodes - Functions - Features of ECG, EEG and EMG. Cardiac and blood related devices: Pacemakers – Electromagnetic compatibility – Defibrillators -Artificial heart valves – Cardiopulmonary bypass –Hemodialysis. (Content- 15 Hrs, Assessment -3 Hrs) (18 Hrs)	18 Hours		
Unit V	Wireless Communication Technology-I Cellular Radio: IMTS, AMPS control system - Security and privacy - Cellular telephone specifications and operations - Cell site equipment - Fax and data communication using cellular phones and CDPD - Digital cellular systems Personal Communication Systems (PCS): Differences between CS and PCS, IS-136 TDMA PCS, GSM, IS-95 CDMA PCS - Comparison of modulation schemes -Data communication with PCS. (Content- 15 Hrs, Assessment -3 Hrs) (18 Hrs)	18 Hours		
Unit VI	Radio Astronomy RADAR Cellular Radio Reconnaissance & Communications Data communication	Field Visit		
Text Books:	 R. Blake, Wireless Communication Technology (DELMAR, New Delhi, 2001). 2 A.W. Joshi, Horizons of Physics (Wiley Eastern Ltd, New Delhi, 2000). R.D. Begamure (Ed.), Scientific Truths About Our, niverse: Know Your Universe: Part I & II (Pune, 2002). 			
Reference Books:	 www.math.ox.ac.uk www.math.upenn.edu 			
Course Outcome:	CO 1: Able to use radio astronomical data to measure physical astronomical targets.	al properties of		

CO 2:	Identify and solve basic communication problems, analyse transmitter and receivers.
CO 3:	Demonstrate measuring of basic medical parameters
CO 4:	Analyse the radio channel characteristics and the cellular principles
CO 5:	Ability to analyse improved data services in cellular communication.

CO/PO	PO					PSO				
	1	2	3	4	5	1	2	3	4	5
CO1	S	M	S	M	M	S	S	S	S	S
CO2	S	M	S	S	S	S	S	S	S	S
CO3	S	S	M	M	M	S	S	S	S	S
CO4	S	S	S	S	S	S	S	S	S	S
CO5	S	S	S	S	S	S	S	S	S	S

Core Course & Title	CORE PRACTICAL - IV PHYSICS PRACTICAL IV (ELECTRONICS) PGPNY							
Class	II MSc Physics	Semester	IV					
Course Objectives	 correlate with the physics theory. To learn the usage of electrical and electronic systems for various measurements. Apply the analytical techniques and graphical analysis to experimental data. To develop intellectual communication skills and discuss the principles of scientific concepts in a group. Practice different types of wiring and instruments connections keeping mind technical, Economical, safety issues. Verification of characteristics and applications of electrical descriptions. 							
	components and devices.							
Cognitive Level	K1 -Recalling K2 -Understanding K3 -Applying K4 - Analyzing K5 - Evaluating K6 - Creating							
	Any FI	FTEEN experiments						
1.	Characteristics of strain guage							
2.	Characteristics of load cell							
3.	Characteristics of torque transdu	cer						
4.	Digital to analog converter R-	2R and weighted method						
5.	Digital comparator using XOR a	nd NAND gates						
6.	Four bit binary up and down cou	nter using IC 7473						
7.	BCD to 7 segment display							
8.	Study of RAM							
9.	Study of A/D converter Count	er ramp type method						
10.	Study of Arithmetic Logic Unit	(ALU) IC 74181						

11.	Pulse co	Pulse code modulation and demodulation					
12.	Voltage	controlled oscillator using IC 555					
13.	Design	of AC/DC voltage regulator using SCR					
14.	Characte	eristics of Gunn diode oscillator					
15.	Up/dow	Up/down counter using mod 10					
Course Outcome:	CO 1:	Understand the behaviour of electronic components and perfor analysis and design of bias circuits for diodes, transistors etc.					
	CO 2:	Set up testing strategies and select proper instruments to evaluate performance characteristics of electronic circuit.					
	CO 3:	Choosing testing and experimental procedures on different types of electronic circuit and analyse their operation different operating conditions.					
	CO 4:	Use special function ICs for different applications.					
	CO 5:	Develop logic circuits for various applications in real life and Design and develop data convertors.					

CO/PO	PO					PSO				
	1	2	3	4	5	1	2	3	4	5
CO1	S	S	S	S	S	S	S	S	S	S
CO2	S	S	S	S	S	S	S	S	S	S
CO3	S	S	S	S	S	S	S	S	S	S
CO4	S	S	S	S	S	S	S	S	S	S
CO5	S	S	S	S	S	S	S	S	S	S

Core Course	I	ELECTIVE COURSE-V									
& Title	/ ADVANCED EXPERIMENTAL TECHNIQUES -										
	PGPE5										
Class	II MSc Physics	Semester	IV								
Course	To make the students und	lerstand the principles.									
Objectives	To involve in measurements.	aring devices, error measure	ments, the standards of								
	To understand perform transducers, and vibration	nance characteristics of an an sensing devices.	instrumentation system,								
	• To apply the techniques.										
Cognitive	K1 -Recalling										
Level	K2 -Understanding										
	K3 -Applying										
	K4 - Analyzing										
	K5 - Evaluating										
	K6 - Creating										
Unit I	X ray diffraction methods		18 Hours								
	Sterographic projection - wulff n	et – measurement of angle betw	veen poles-								
	determination of Miller indices	of an unknown pole. X- ray	diffraction								
	under non ideal conditions – Sch	errer formula for estimation ofp	particlesize.								
	Laue method, rotating crystal me	thod – powder method-Scherre	r camera.								
	(Content- 15Hrs, Assessment -	3 Hrs) (15Hrs)									
Unit II	Spectroscopic techniques		18 Hours								
	Mass spectroscopy and Xray	emission spectroscopy (prin	nciple and								
	limitations), Quadrupole mass		-								
	spectroscopy (XPS), Auger elec										
	spectroscopy – Fourier transform										
	(Content- 15Hrs, Assessment -:										
	,	· · · · · · · · · · · · · · · · · · ·									

Unit III Unit IV	Electron beam techniques Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), Ruther ford back scattering spectrometry (RBS), Ion beam techniques, Field ion microscopy (IM) (Content- 15Hrs, Assessment -3 Hrs) (18 Hrs)	18 Hours
Unit IV	Optical techniques Use of polarized light in the study of transparent materials – polarized light microscopy – coloscopy –compensator techniques—Babinet— Soleil compensator - Berek compensator. (Content- 12Hrs, Assessment -3 Hrs) (18Hrs)	16 Hours
Unit V	Thermal analytical techniques Differential thermal analysis – Instrumentation – differential scanning calorimetry – thermo gravimetric analysis –Instrumentation.(Content-12Hrs, Assessment -3 Hrs) (18Hrs)	18 Hours
Text Books:	 Cullity BD, Elements of X ray diffraction Addison Wesley Publishing Edition. Dieter K Schroder, Semiconductor material and Characterization Josons inc, 1990, 2nd edition). PruttonM, Surface Physics, ClarendonPress, 1975, 2nd edition. M.Woolfson, An IntroductiontoXrayCrystallography, CambridgeCambridge, 1970, 2nd edition. 	ohn Wiley and
Reference Books:	 Cullity BD, Elements of X ray diffraction Addison Wesley Publishing Edition. Dieter K Schroder, Semiconductor material and Characterization Josons inc, 1990, 2nd edition). PruttonM, Surface Physics, Clarendon Press, 1975, 2nd edition. M. Woolfson, An 	

	I	ntroductiontoXrayCrystallography,CambridgeCambridge,1970,2 nd edition.
Web- Resources:	<u>F</u>	https://www.amazon.in/Advanced-Experimental-Techniques-Physics-Prakashan/dp/B07YCM821T https://eng.ua.edu/tag/advanced-experimental-techniques/
Course Outcome:	CO 1:	The students are expected to learn the art and science of carrying out experimental research.
	CO 2:	At the end of the course a student should be able to design and carry out an experiment on his/her own.
	CO 3:	This is an important skill which anybody wanting to do experimental research is expected to possess.
	CO 4:	To learn the art and science of carrying out experimental research
	CO 5:	Techniques of curve fitting and parameter estimation

CO/PO	PO					PSO				
	1	2	3	4	5	1	2	3	4	5
CO1	S	S	S	S	S	S	S	S	S	S
CO2	S	S	S	M	M	S	S	S	S	S
CO3	S	S	M	S	S	S	S	S	S	S
CO4	S	S	S	S	S	S	S	M	S	S
CO5	S	S	M	S	M	S	S	S	S	S

Core Course & Title	ELECTIVE COURSE-V / BASICS OF COMPUTATIONAL NANOELECTRONICS- PGPE5									
Class	Ii Msc physics	iv								
Course Objectives	underlying the phenomerThe aim of the course is,In this course, students v	 underlying the phenomena in the mesoscopic systems. The aim of the course is, how to model and solve nanojunctions. In this course, students will learn some new advanced topics such as: quantization of electrical conductance, Coulomb Blockade, quantum 								
Cognitive Level	K1 -Recalling K2 -Understanding K3 -Applying K4 - Analyzing K5 - Evaluating K6 - Creating									
Unit I	Two Key Concepts, Why Electrons Flow, Conductance Formula, Ballistic Conductance, Diffusive Conductance, Connecting Ballistic to Diffusive, Drude Formula, Characteristic Length Scale, Transport Regime.									
Unit II	Density of States, Number Conductivity vs. Electron Do Nanotransistors, What and Whe Current from QuasiFermi Levels	ensity, Quantum Capacitance, re is the Voltage, Spin Voltage,								
Unit III	What a Probe Measures, Boltz Model, Quantum Model, Landau Self-Energy, Surface Green's Scattering Theory, Transmission	uer Formulas, NEGF Equations, Function, Current Operator,								
Unit IV	Spin Transport, Vectors and Spi Hamiltonian, Spin Density/Curr Current, Second Law, Entropy, I	rent, Seebeck Coefficient, heat								
Unit V	Application of Nanomaterials Molecular Electronics and Nanoelectronics – Nanobots- Biological Applications – Quantum Devices – Nanomechanics - Carbon Nanotube – Photonics- Nano structures as single electron transistor – principle and design.									
Text Books:		Lessons from Nanoelectronics: A New Perspective on Transport: Volume 1 & 2 by Supriyo Datta (World Scientific) G:								

		2. Theory of Quantum Transport at Nanoscale: An Introduction by Dmitry A Ryndyk (Springer) H: 3. Quantum Transport: Introduction to Nanoscience by Yuli V. Nazarov and Yaroslav M. Blanter (CAMBRIDGE)
Reference Books:	2. V	S.P. Gaponenko, Optical Properties of semiconductor nanocrystals, Cambridge University Press, 1980. W.Gaddand, D.Brenner, S.Lysherski and G.J.Infrate(Eds.), Handbook of NanoScience, Engg. and Technology, CRC Press, 2002.
Web-Resources:		https://www.ecc.itu.edu.tr/index.php/ELE_523E https://www.nature.com/subjects/computational-nanotechnology
Course Outcome:	CO 1:	Discuss the types of nanotechnology, molecular technology and the preparation of nano materials.
	CO 2:	Explains the fundamental of the devices such as logic devices, field effect devices, and spintronics.
	CO 3:	Describe the concepts of silicon MOSFET and Quantum Transport Devices.
	CO 4:	Summarize the types, synthesis, interconnects and applications of carbon nano tubes.
	CO 5:	Explain the concepts, functions, fabrications and applications of molecular electronics

CO/PO	PO					PSO				
	1	2	3	4	5	1	2	3	4	5
CO1	S	S	S	S	M	S	S	M	S	S
CO2	S	S	M	M	S	S	S	S	S	S
CO3	S	S	M	M	S	S	S	M	S	S
CO4	S	S	M	M	S	S	S	S	S	S
CO5	S	S	S	S	S	S	S	S	S	S